产品分类
  • 调节阀
    气动调节阀
    电动调节阀
    自立式调节阀
  • 气动阀门
    气动球阀
    气动蝶阀
  • 电动阀门
    电动球阀
    电动蝶阀
  • 控制阀附件
自控阀门制造商

雷诚阀门深度解析调节阀噪声

发表时间:2020-05-06 10:34作者:雷诚阀门

1、液体动力噪声


     液体动力噪声是由于液体流过调节阀的节流孔而产生的。调节阀结构多种多样,典型的节流形式如图1所示。各种节流口的结构形式尽管不同,但都对液体产生节流作用。当液体通过节流口时,由于节流口面积的急剧变化,流通面积缩小,流速升高,压力下降,因而容易产生阻塞流,产生闪蒸和空化作用,这些情况都是诱发噪声的原因。


1.jpg


图1


     当阀门节流口的前后压差不大时,节流口的噪声是极小的,流动的声音不大,因此,不必考虑噪声的问题。如果压差较大,流经调节阀的流体开始出现了闪蒸情况,流动的流体变成有气泡存在的气、液两相的混合体,两相流体的减速和膨胀作用自然形成了噪声。而且,由于电动调节阀口附近截流断面的急剧变化,在高速喷流状态下引起流动速度的不均匀,从而产生了一种旋涡脱离声。


     当空化作用产生时,气泡破裂,强大的能量除产生破坏力外,还发出噪声,这种噪声的频率有时高达10000Hz。气泡越多、越大,噪声越严重。


     在选择调节阀时,为了避免产生液体动力噪声,关键在于找到开始产生空化作用时的阀门压降ΔPc,确保阀门压降小于ΔPc。为此,引入一个起始空化系数KC的概念。



     KC的数值由实验得到,它也可以根据液体的压力系数FL来确定,图2   示出了FL和KC的关系。


2.jpg

图2


2、气体动力噪声


     气体动力噪声是气体或蒸汽流过节流孔而产生的。工业上遇到的调节阀的噪声,大多数是气体动力噪声。气体和蒸汽都是可压缩流体,一般来说,可压缩流体的流速都要高于不可压缩流体的流速。当气体流速比声音速度低时,噪音是因为强烈的扰流产生的;当气体的速度大于声速时,流体中产生冲击波,所以噪声剧增。把各种噪声加以比较,可压缩流体流经调节阀产生的噪音是最严重的。




3、旋涡脱离噪声


     在各种噪声类型中,有一种旋涡脱离噪声,可压缩流体在流过物体表面时,极容易产生这种噪声。当流体质点流到一个非流线型的圆柱体的前缘时,流体受阻,压力就从自由流动时的压力升高到另一种压力,这是因为流体动能的转换。流体绕过圆柱体,形成附面层后,继续流动。在雷诺数Re不同时,调节阀流体流动的情况是不同的。


     从图3可以看出,当Re<5时,流体并不脱离圆柱体图(a);当5≤Re<40时,尾流中紧贴圆柱体后面形成一对稳定的旋涡图(b);当40≤Re<150时时,对称旋涡破裂,在尾流中出现稳定的、非对称的、排列规则的、旋转方向相反的旋涡列,这些旋涡周期性地脱离圆柱体(c);当Re>150时,旋涡列已不再稳定;Re≥300时,整个尾流区已变成湍流状态(d)。


3.jpg

图3


     不可压缩流体的雷诺数Re一般都很大,在这种情况下,附面层不能包围住圆柱体的背面,而是从圆柱体表面的两侧脱开,形成两个在流动中向尾部延伸的剪切层。这两个剪切层形成尾流的边界,因为调节阀内层相对于最外层移动慢得多,于是,这些自由剪切层就有卷成不连续打旋的旋涡的倾向,尾流中形成了旋涡流,旋涡流和圆柱体相互作用,诱发振动。当旋涡交替地从圆柱体两侧脱落时,也就激发了圆柱体周期性的脉动力。这种力使有弹性的圆柱体产生振动并发出风鸣音调。风吹过电线时,就可以听到了风鸣声,这就是旋涡脱离现象。而当旋涡脱离的频率与圆柱体的固有频率接近或相同时,振动加大,共振发生,噪声增大。当Re>3×105时,旋涡的脱离是十分凌乱的,而且形成一个很宽的频带。


     如果零件是非圆形截面,上述的现象和结论也同样适用。


     总之,可压缩流体流经气动调节阀时,在节流截面最小处可能达到或超过声音速度,这就形成冲击波、喷射流、旋涡流等凌乱的流体,这种流体在节流孔的下游转换成热能,同时产生气体动力噪声,沿着下游管道,传送到各处,严重时将因振动过大而破坏管道系统。

14.png

10.png

18.png